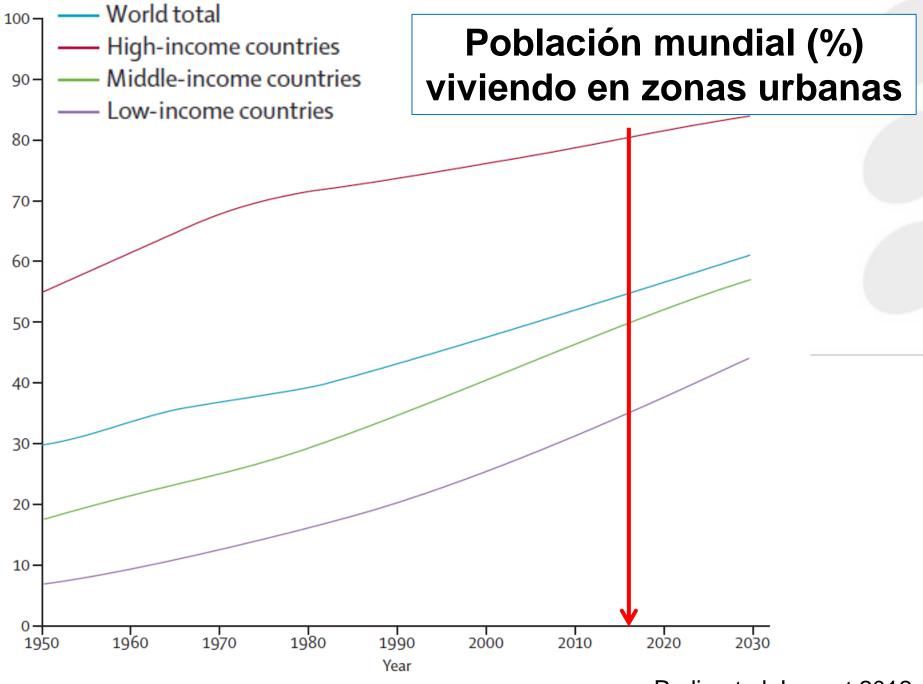
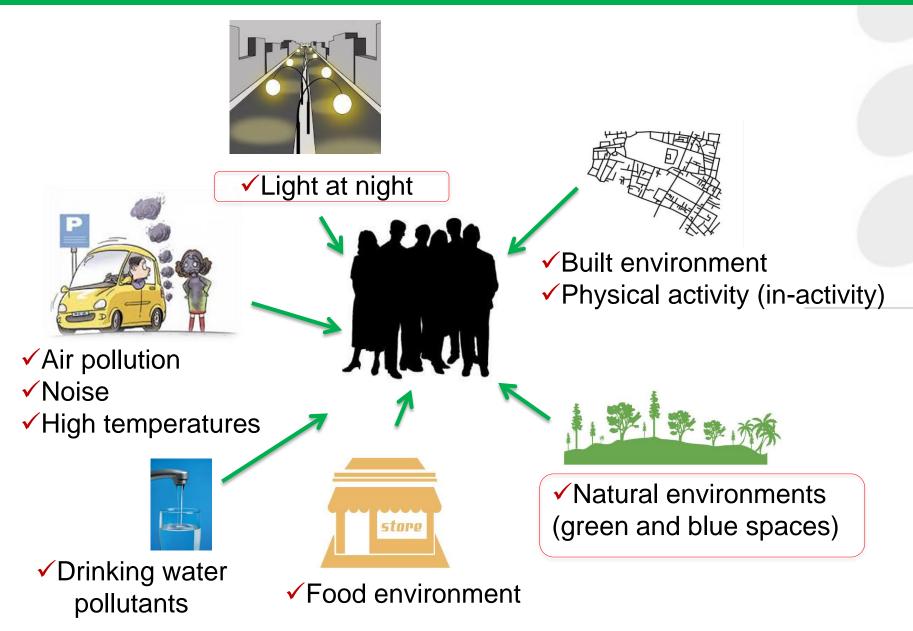


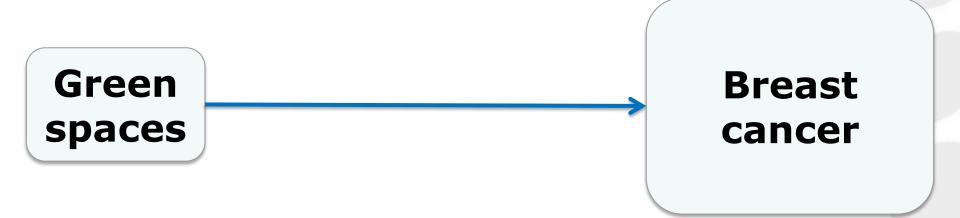
Living in cities and risk of cancer: the multicase-control study in Spain (MCC-Spain)

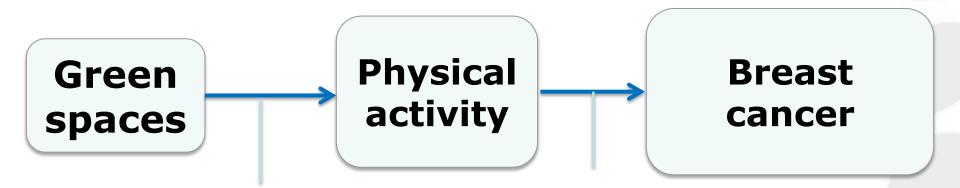
Cristina Villanueva, Grupo 38 CIBERESP En nombre de MCC-Spain


Jornada Científica CIBERESP 2018 Madrid, 13 Junio



FONDO EUROPEO DE DESARROLLO REGIONAL Una manera de hacer Europa FONDO SOCIAL EUROPEO ELESE invierte en tu futuro

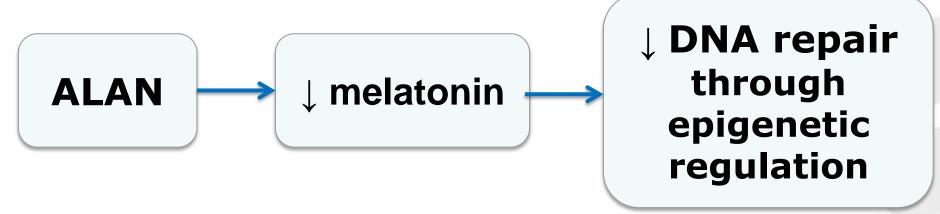



Rydin et al. Lancet 2012

Urban environment

Natural environments and cancer

Access to Natural Outdoors Environments ↑ physical activity (Humpel 2002; Kaczynski


2007; McMorris 2014)

 \downarrow breast cancer risk.

prospective cohort (EPIC), 242,918 postmenopausal women (McKenzie 2015)

Artificial light-at-night (ALAN) and breast cancer

- Higher breast cancer risk reported among night shift workers
- Shift work involving circadian disruption is "probably carcinogenic to humans" (IARC)

OBJECTIVES

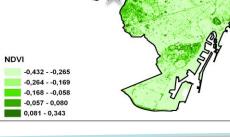
To evaluate the association between environmental exposures linked to urbanization and cancer risk using MCC-Spain data

 Acces to green areas and surrounding greeness

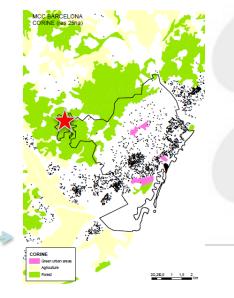
In relation to prostate and breast cancer

• ALAN at night

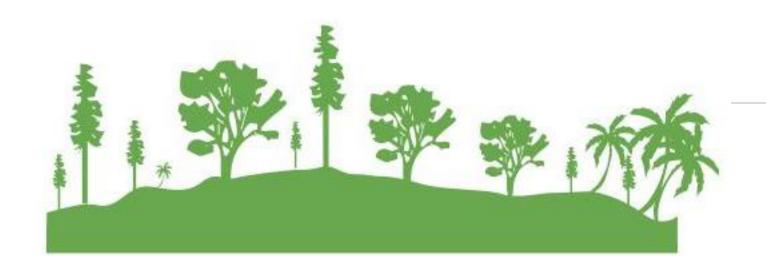
METHODS: The MCC-Study


- 10.106 subjects (2008-2013)
- Incident cancer cases:
 - Colon
 - Breast
 - Prostate
 - Stomach
 - Chronic lymphocytic leukemia
- Population controls
- 23 hospitals (12 provinces)
- Age range 20-85 years
- Information on sociodemographic factors, environmental exposures, occupation, medication, lifestyles, personal and family medical history and detailed residential history

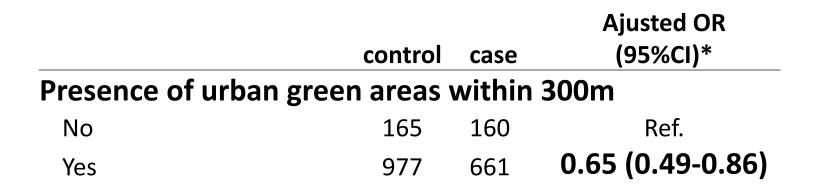



METHODS: Geocoding and exposure assignment

Greenness



Light at night


10.50

RESULTS. Natural environments

	control	case	Ajusted OR (95%CI)*			
Presence of urban green areas within 300m						
No	165	160	Ref.			
Yes	977	661	0.65 (0.49-0.86)			
Presence of agricultural areas within 300m						
No	1308	857	Ref.			
Yes	311	272	1.33 (1.07-1.65)			
Surrounding greenness (NDVI)						
	274	16	1.20 (1.07-1.34)			

Presence of urban green areas within 300m

- No Ref.
- Yes 0.65 (0.49-0.86)

Presence of agricultural areas within 300m

- No Ref.
- Yes 1.33 (1.07-1.65)

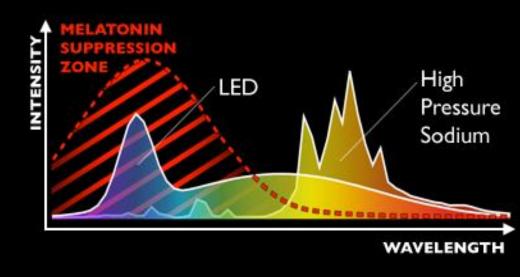
Surrounding greenness (NDVI)

1.20 (1.07-1.34)

		+PM2,5	
OR (95%CI)*		OR (95%CI)*	
Presenc	e of urban green areas with	in 300m	
No	Ref.	Ref.	
Yes	0.65 (0.49-0.86)	0.65 (0.49-0.87)	
Presenc	e of agricultural areas with	in 300m	
No	Ref.	Ref.	
Yes	1.33 (1.07-1.65)	1.40 (1.12-1.74)	
Surroun	nding greenness (NDVI)		
	1.20 (1.07-1.34)	1.25 (1.11-1.40)	

Artificial light-at-night (ALAN)

Indoor ALAN exposure


Indoor ALAN	Controls /Cases	Breast cancer OR (95%CI)	Controls /Cases	Prostate cancer OR (95%CI)
Total darkness	46/49	1.0	94/72	1.0
Almost dark	173/118	0.7 (0.4,1.2)	185/92	0.7 (0.4,1.1)
Dim light	192/178	1.0 (0.6, 1.7)	165/138	1.2 (0.7,1.8)
Quite illuminated	33/31	0.7 (0.4,1.5)	28/54	2.8 (1.5,5.0)

A Garcia-Saenz, EHP 2018

Outdoor ALAN exposure

High vs. low tertile blue light Breast cancer: OR=1.5 (95%CI 1.0-2.2) Prostate cancer: OR=2.1 (95%CI 1.4-3.0)

Adjusted for age, centre, educational level, SES score, urban vulnerability index, BMI, smoking, family history of breast/prostate cancer, chronotype, menopausal status (breast cancer) and mutual adjustment for other light exposures.

A Garcia-Saenz, EHP 2018

- Living close to urban green areas protective factor for breast cancer
- Association not mediated by physical activity nor levels of air pollution
- Need to explore other potential mechanisms (stress restoration?)
- Living close to agricultural areas risk factor for breast cancer → Higher exposure to pesticides?

Conclusions: Artificial light at night

- First large study using individual information on the two cancers most strongly associated with circadian disruption and light-at-night.
- Indoor and outdoor ALAN was associated with a higher risk of prostate cancer
- $_{\odot}$ Less consistent findings overall for breast cancer.
- The strongest findings for outdoor blue-light, which is probably the most biologically relevant exposure.

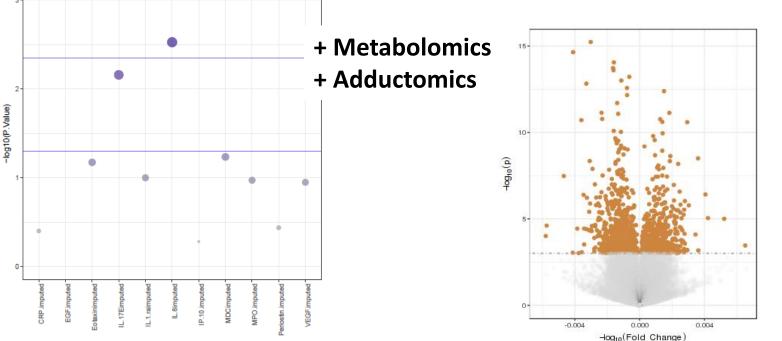
Garcia-Saenz A, et al. (2018) Environ Health Perspect; DOI:10.1289/EHP1837

SUMMARY OF RESULTS

Exposure		Breast cancer	Prostate cancer
Green spaces	Urban green areas	\downarrow	\land
	Agricultural areas	\uparrow	
	Surrounding greenness	\uparrow	WORK IN PROGRESS
Artificial Light at night	ALAN-outdoor blue light	\uparrow	\uparrow
Water pollution	Disinfection by-products Nitrate	TTHM 0 Chloroform 个 个	WORK IN PROGRESS
Air pollution	PM _{2.5}		
	NO ₂	WORK IN PROGRESS	WORK IN PROGRESS

Impact

 If these associations are confirmed as causal, interventions on these modifiable risk factors would contribute to reduce cancer burden worldwide



Future...

 Inclusion of "–omic" approaches to understand biological mechanisms

Proteomics: Differences in serum immune markers due to long term trihalomethanes (THM) exposure in drinking water

Epigenomics: Volcano plots for models of methylation levels comparing subjects with different residential exposure to brominated THMs drinking water

C.Villanueva & M.Kogevinas

Acknowledgments

ISGlobal, Barcelona:

Cristina O'Callaghan, Ariadna Garcia,

Manolis Kogevinas, Gemma Castaño, Esther Gracia-Lavedan, Ana Espinosa et al.

Carlos III Institute of Health, Madrid

Marina Pollán, Núria Aragonés, Beatriz Pérez et al

ICO, Barcelona:

Victor Moreno, Silvia de Sanjosé et al

ICO, Girona

Rafael Marcos et al.

Universidad de León

Vicente Martin et al

CARM, Murcia

Carmen Navarro et al

UNICAN, Cantábria

Javier Lorca et al

UGR, Granada

Juan José Jimenez

UNIOVI, Asturias

Adonina Tardón et al

U. Huelva

Juan Alguacil et al

FISABIO:

Rosana Peiró et al

Instituto de Salud Pública de Navarra:

Eva Ardanaz et al

Instituto BioDonistia:

Pilar Amiano et al

